Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se2 solar cells integration on stainless steel sheet

Identifieur interne : 000F37 ( Main/Repository ); précédent : 000F36; suivant : 000F38

Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se2 solar cells integration on stainless steel sheet

Auteurs : RBID : Pascal:13-0285022

Descripteurs français

English descriptors

Abstract

For the fabrication of monolithically integrated flexible Cu(In, Ga)Se2, CIGS modules on stainless steel, individual photovoltaic cells must be insulated from metal substrates by a barrier layer that can sustain high thermal treatments. In this work, a combination of sol-gel (organosilane-sol) and sputtered SiAlxOy forming thin diffusion barrier layers (TDBL) was prepared on stainless steel substrates. The deposition of organosilane-sol dielectric layers on the commercial stainless steel (maximal roughness, Rz = 500 nm and Root Mean Square roughness, RMS = 56 nm) induces a planarization of the surface (RMS = 16.4 nm, Rz = 176 nm). The DC leakage current through the dielectric layers was measured for the metal-insulator-metal (MIM) junctions that act as capacitors. This method allowed us to assess the quality of our TDBL insulating layer and its lateral uniformity. Indeed, evaluating a ratio of the number of valid MIM capacitors to the number of tested MIM capacitors, a yield of ∼ 95% and 50% has been reached respectively with non-annealed and annealed samples based on sol-gel double layers. A yield of 100% was achieved for sol-gel double layers reinforced with a sputtered SiAlxOy coating and a third sol-gel monolayer. Since this yield is obtained on several samples, it can be extrapolated to any substrate size. Furthermore, according to Glow Discharge Optical Emission Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy measurements, these barrier layers exhibit excellent barrier properties against the diffusion of undesired atoms which could otherwise spoil the electronic and optical properties of CIGS photovoltaic cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0285022

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se
<sub>2</sub>
solar cells integration on stainless steel sheet</title>
<author>
<name sortKey="Amouzou, Dodji" uniqKey="Amouzou D">Dodji Amouzou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61</s1>
<s2>5000 Namur</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>5000 Namur</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guaino, Philippe" uniqKey="Guaino P">Philippe Guaino</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CRM-Group, Boulevard de Colonster, B 57</s1>
<s2>4000 Liège</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>4000 Liège</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fourdrinier, Lionel" uniqKey="Fourdrinier L">Lionel Fourdrinier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CRM-Group, Boulevard de Colonster, B 57</s1>
<s2>4000 Liège</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>4000 Liège</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Richir, Jean Baptiste" uniqKey="Richir J">Jean-Baptiste Richir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CRM-Group, Boulevard de Colonster, B 57</s1>
<s2>4000 Liège</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>4000 Liège</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maseri, Fabrizio" uniqKey="Maseri F">Fabrizio Maseri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CRM-Group, Boulevard de Colonster, B 57</s1>
<s2>4000 Liège</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>4000 Liège</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sporken, Robert" uniqKey="Sporken R">Robert Sporken</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61</s1>
<s2>5000 Namur</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>5000 Namur</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0285022</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0285022 INIST</idno>
<idno type="RBID">Pascal:13-0285022</idno>
<idno type="wicri:Area/Main/Corpus">000867</idno>
<idno type="wicri:Area/Main/Repository">000F37</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barrier layer</term>
<term>Breakdown voltage</term>
<term>Calcium nitride</term>
<term>Capacitor</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Dielectric thin films</term>
<term>Diffusion</term>
<term>Diffusion barrier</term>
<term>Electronic properties</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Glow discharge</term>
<term>Heat treatment</term>
<term>Indium selenides</term>
<term>Leakage current</term>
<term>MIM junctions</term>
<term>Monolayer</term>
<term>Multilayer</term>
<term>Multiple layer</term>
<term>Optical properties</term>
<term>Photovoltaic cell</term>
<term>Reliability</term>
<term>Roughness</term>
<term>Secondary ion mass spectrometry</term>
<term>Sol gel process</term>
<term>Solar cell</term>
<term>Sputter coating</term>
<term>Sputter deposition</term>
<term>Stainless steel</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Barrière diffusion</term>
<term>Couche multimoléculaire</term>
<term>Cellule solaire</term>
<term>Séléniure d'indium</term>
<term>Dispositif photovoltaïque</term>
<term>Couche barrière</term>
<term>Nitrure de calcium</term>
<term>Traitement thermique</term>
<term>Procédé sol gel</term>
<term>Dépôt pulvérisation</term>
<term>Couche mince diélectrique</term>
<term>Acier inoxydable</term>
<term>Rugosité</term>
<term>Multicouche</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Courant fuite</term>
<term>Jonction MIM</term>
<term>Condensateur</term>
<term>Revêtement pulvérisation</term>
<term>Couche monomoléculaire</term>
<term>Décharge luminescente</term>
<term>Spectrométrie SIMS</term>
<term>Diffusion(transport)</term>
<term>Propriété électronique</term>
<term>Propriété optique</term>
<term>Fiabilité</term>
<term>Tension amorçage</term>
<term>Substrat acier inoxydable</term>
<term>Substrat métal</term>
<term>8460J</term>
<term>8115L</term>
<term>8115C</term>
<term>7755</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the fabrication of monolithically integrated flexible Cu(In, Ga)Se
<sub>2</sub>
, CIGS modules on stainless steel, individual photovoltaic cells must be insulated from metal substrates by a barrier layer that can sustain high thermal treatments. In this work, a combination of sol-gel (organosilane-sol) and sputtered SiAlxOy forming thin diffusion barrier layers (TDBL) was prepared on stainless steel substrates. The deposition of organosilane-sol dielectric layers on the commercial stainless steel (maximal roughness, Rz = 500 nm and Root Mean Square roughness, RMS = 56 nm) induces a planarization of the surface (RMS = 16.4 nm, Rz = 176 nm). The DC leakage current through the dielectric layers was measured for the metal-insulator-metal (MIM) junctions that act as capacitors. This method allowed us to assess the quality of our TDBL insulating layer and its lateral uniformity. Indeed, evaluating a ratio of the number of valid MIM capacitors to the number of tested MIM capacitors, a yield of ∼ 95% and 50% has been reached respectively with non-annealed and annealed samples based on sol-gel double layers. A yield of 100% was achieved for sol-gel double layers reinforced with a sputtered SiAlxOy coating and a third sol-gel monolayer. Since this yield is obtained on several samples, it can be extrapolated to any substrate size. Furthermore, according to Glow Discharge Optical Emission Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy measurements, these barrier layers exhibit excellent barrier properties against the diffusion of undesired atoms which could otherwise spoil the electronic and optical properties of CIGS photovoltaic cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>542</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se
<sub>2</sub>
solar cells integration on stainless steel sheet</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AMOUZOU (Dodji)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUAINO (Philippe)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FOURDRINIER (Lionel)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RICHIR (Jean-Baptiste)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MASERI (Fabrizio)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SPORKEN (Robert)</s1>
</fA11>
<fA14 i1="01">
<s1>Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61</s1>
<s2>5000 Namur</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CRM-Group, Boulevard de Colonster, B 57</s1>
<s2>4000 Liège</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>270-275</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000501509380450</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0285022</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>For the fabrication of monolithically integrated flexible Cu(In, Ga)Se
<sub>2</sub>
, CIGS modules on stainless steel, individual photovoltaic cells must be insulated from metal substrates by a barrier layer that can sustain high thermal treatments. In this work, a combination of sol-gel (organosilane-sol) and sputtered SiAlxOy forming thin diffusion barrier layers (TDBL) was prepared on stainless steel substrates. The deposition of organosilane-sol dielectric layers on the commercial stainless steel (maximal roughness, Rz = 500 nm and Root Mean Square roughness, RMS = 56 nm) induces a planarization of the surface (RMS = 16.4 nm, Rz = 176 nm). The DC leakage current through the dielectric layers was measured for the metal-insulator-metal (MIM) junctions that act as capacitors. This method allowed us to assess the quality of our TDBL insulating layer and its lateral uniformity. Indeed, evaluating a ratio of the number of valid MIM capacitors to the number of tested MIM capacitors, a yield of ∼ 95% and 50% has been reached respectively with non-annealed and annealed samples based on sol-gel double layers. A yield of 100% was achieved for sol-gel double layers reinforced with a sputtered SiAlxOy coating and a third sol-gel monolayer. Since this yield is obtained on several samples, it can be extrapolated to any substrate size. Furthermore, according to Glow Discharge Optical Emission Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy measurements, these barrier layers exhibit excellent barrier properties against the diffusion of undesired atoms which could otherwise spoil the electronic and optical properties of CIGS photovoltaic cells.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70G55</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Barrière diffusion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Diffusion barrier</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Barrera difusión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Couche multimoléculaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Multilayer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Capa multimolecular</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche barrière</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Barrier layer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nitrure de calcium</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Calcium nitride</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Calcio nitruro</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Procédé sol gel</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Sol gel process</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Procedimiento sol gel</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche mince diélectrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Dielectric thin films</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Acier inoxydable</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Stainless steel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Acero inoxidable</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Rugosité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Roughness</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Rugosidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Multicouche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Multiple layer</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa múltiple</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Courant fuite</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Leakage current</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Corriente escape</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Jonction MIM</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>MIM junctions</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Condensateur</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Capacitor</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Condensador</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Revêtement pulvérisation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Sputter coating</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Revestimiento pulverización</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche monomoléculaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Monolayer</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa monomolecular</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Décharge luminescente</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Glow discharge</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Descarga luminiscente</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Spectrométrie SIMS</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Secondary ion mass spectrometry</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Espectrometría SIMS</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Tension amorçage</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Breakdown voltage</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Voltaje perforación</s0>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Substrat acier inoxydable</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Substrat métal</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>7755</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0285022
   |texte=   Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se2 solar cells integration on stainless steel sheet
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024